본문 바로가기

쓰기

 
저자 윤태복, 이지형, 정영모, 차현진, 박선희, 김용세 
학회명 한국 퍼지 및 지능시스템학회 추계학술대회 
학회명 (약자) KIIS 2006 
페이지 135-138 
학회시작일 2006-11-17 
학회종료일 2006-11-19 

사용자 모델링을 위해서는 사용자의 성향 및 행위 등의 다양한 정보를 수집하여 분석에 이용한다. 하지만 사용자(인간)로 부터 얻은 데이터는 기계나 환경에서 수집된 데이터 보다 패턴을 찾기 힘들어 모델링하기 어렵다. 그 이유는 사용자는 사용자의 현재 상태와 상황에 따라 다양한 결과를 보이며, 일관성을 유지 하지 않는 경우가 있기 때문이다. 사용자 모델링을 위해서는 분산되어 있는 데이터에서 노이즈를 선별하고 연관성 있는 데이터를 분류할 수 있는 기술이 필요하다. 본 논문은 사용자로 부터 수집된 데이터를 k-NN(Nearest Neighbor) 기법을 이용하여 노이즈를 선별한다. 노이즈가 제거된 데이터는 의사결정나무(Decision Tree)방법을 이용하여 학습하였고, 노이즈가 분류되기 전과 비교 분석 하였다. 실험에서는 홈 인테리어 학습 컨텐츠인 DOLLS-HI를 이용하여 수집된 학습자의 데이터를 이용하였고, 생성된 학습자 모델링의 신뢰도가 높아지는 것을 확인하였다.

    2021

      이상치 탐지를 위한 범용 필터 생성
      2021.01.24
      저자: 노순철, 홍만수, 이지형     학회명: 한국지능시스템학회 2020년도 추계 학술대회     학회시작일: 2020-11-27     학회종료일: 2020-11-28    
      안정적인 GCN 학습 연구
      2021.01.24
      저자: 김가형, 임지영, 강석규, 이지형     학회명: 한국지능시스템학회 2020년도 추계 학술대회     학회시작일: 2020-11-27     학회종료일: 2020-11-28    

    2020

    2019

    2018

      CNN을 이용한 문자열 CAPTCHA 공격
      2018.05.01
      저자: 이상헌, 우상명, 이지형     학회명: 한국지능시스템학회 2018년도 춘계학술대회     학회시작일: 2018-04-20     학회종료일: 2018-04-21