본문 바로가기

쓰기

 
저자 김동문, 이지형 
학회명 한국정보과학회 추계학술대회 
학회명 (약자) KISS 2006 
페이지 250-253 
학회시작일 2006-10-20 
학회종료일 2006-10-23 

최근 들어 음원 협회의 항소로 인해 음악 파일을 무료로 다운 받을 수 없게 되었다. 이로 인해, 유료음악 사이트의 사용이 증가되었고, 수익성이 커지고 있다. 하지만 수요가 커진 것에 비해, 대부분의 음악 사이트들의 서비스는 음악 메일이나 휴대폰 전송 등에 그치고 있다. 따라서 사용자를 유치하기 위한 전략으로 추천시스템을 제안하고자 한다. 그 방법으로, 본 논문에서는 음악의 파형 변화를 분석하고, 사용자가 다운로드했던 파일의 리스트를 통하여 사용자 맞춤형 추천 시스템을 벡터 유사도를 통하여 구현하고자 한다. 음악에 대한 성분은 파형을 통하여 진폭과 진동수에 대한 특징 벡터를 추출한다. 그리고 사용자의 다운로드 리스트에 누적시킨다. 위의 두 절차를 통해 사용자의 리스트를 분석하여 비슷한 성분의 음악을 검색한다. 실험을 위해 사용되는 음악 성분에 대한 내용은 수치적인 데이터를 기반하고 있기 때문에 자동화가 용이했고, 빠른 연산 시간과 유동적인 검색 범위를 가질 수 있었다.

    2014

    2012

      RNN을 이용한 고객 이탈 예측 및 분석
      2016.08.10
      저자: 이세희, 이지형     학회명: 한국컴퓨터정보학회 하계학술대회     학회명 (약자): KSCI2016     페이지: 45-48     학회시작일: 2016-07-14     학회종료일: 2016-07-16    
      연결키워드 중심의 문장 벡터 모델링
      2016.08.10
      저자: 이세희, 김수아, 이지형     학회명: 한국지능시스템학회 춘계 학술대회     학회명 (약자): KIIS 2016     페이지: 161-162     학회시작일: 2016-04-08     학회종료일: 2016-04-09