본문 바로가기

쓰기

 
저자 Noo-ri Kim, Jaedong Lee, and Jee-Hyong Lee 
학회명 International Symposium on Advanced Intelligent Systems 
학회명 (약자) ISIS 2013 
pp. 1-8 
학회시작일 2013-11-13 
학회종료일 2013-11-16 
비고  

Abstract.

Movie recommendation systems assist users to choose movies that users would like to watch. To improve recommendation systems’ performance, finding users similar with the target user is very important. However, it is not easy to find similar users because user preferences are complicated. In this paper, we regard user preferences as composition of fundamental preferences. Fundamental preferences of a user are cohesive subsets of his/her preference. We propose an approach to separate fundamental preferences from user’s preference and recommend movies based on those. We evaluate the proposed method by experiments using MovieLens dataset.

    2016

    2015

    2014

      Automatic View Composition for Improving Co-training
      2014.12.13
      저자: HyeWoo Lee, Kyoungmin Kim, Jaedong Lee and Jee-Hyong Lee     학회명: International Symposium on Advanced Intelligent Systems     pp.: 13-16     학회시작일: 2014-12-03     학회종료일: 2014-12-06    
      A tweet Summarization Method Based on a Keyword Graph
      2014.03.05
      저자: Tae-yeon Kim, Jaekwang Kim, Jaedong Lee, Jeehyong Lee     학회명: International Conference on Ubiquitous Information Management and Communication     학회명 (약자): ICUIMC 2014     학회시작일: 2014-01-09     학회종료일: 2014-01-11    

    2013

      LDA Clustering using Plot Information in Movie Recommendation
      2013.11.27
      저자: Changyong Park, Noo-ri Kim, Yeounoh Chung and Jee-Hyong Lee     학회명: International Symposium on Advanced Intelligent Systems     학회명 (약자): ISIS 2013     pp.: 1436-1445     학회시작일: 2013-11-13     학회종료일: 2013-11-16