발표자 | 김누리 |
---|---|
발표일자 | 2021-11-23 |
저자 | Zhang, Bowen, et al. |
학회명 | Advances in Neural Information Processing Systems 34 (2021) |
논문지 |
The recently proposed FixMatch achieved state-of-the-art results on most semi-supervised learning (SSL) benchmarks. However, like other modern SSL algorithms, FixMatch uses a pre-defined constant threshold for all classes to select unlabeled data that contribute to the training, thus failing to consider different learning status and learning difficulties of different classes. To address this issue, we propose Curriculum Pseudo Labeling (CPL), a curriculum learning approach to leverage unlabeled data according to the model's learning status. The core of CPL is to flexibly adjust thresholds for different classes at each time step to let pass informative unlabeled data and their pseudo labels. CPL does not introduce additional parameters or computations (forward or backward propagation). We apply CPL to FixMatch and call our improved algorithm FlexMatch. FlexMatch achieves state-of-the-art performance on a variety of SSL benchmarks, with especially strong performances when the labeled data are extremely limited or when the task is challenging. For example, FlexMatch outperforms FixMatch by 14.32% and 24.55% on CIFAR-100 and STL-10 datasets respectively, when there are only 4 labels per class. CPL also significantly boosts the convergence speed, e.g., FlexMatch can use only 1/5 training time of FixMatch to achieve even better performance. Furthermore, we show that CPL can be easily adapted to other SSL algorithms and remarkably improve their performances. We open-source our code at https://github.com/TorchSSL/TorchSSL.
댓글 4
-
김호승
2021.11.23 18:42
-
김누리
2021.11.23 19:07
성능차이가 어느정도 있을 것이라 생각되는데, 직접 돌려보지 않으면 확인하기가 쉽지 않을 것 같습니다. 저자가 비교적 성능 차이가 적은 cifar10을 통해 ablation을 보여주고 있어서 그 정도를 예상하기는 쉽지 않겠습니다. 저자들은 논문에서 convexity의 정도를 조절하면 더 좋은 결과를 가질 수 있을 것이라 예상하지만 본 논문에서는 다루지 않는다고 말하고 있습니다. -
이지형
2021.11.23 18:46
labeled data가 매우 적을 떄 좋은 결과를 산출하는데, 전체적인 아이디어는 좋으나 이를 이론적으로 풀어내는 부분이 조금 아쉬움. -
jinsuby
2021.11.23 19:44
Adaptive threshold 기법을 적용하기 전 후 방법에 대해서 OOD 데이터에 대한 clustering 성능 결과가 유의미한 차이가 있는지 궁금합니다.
2022

Text Smoothing : Enhance Various Data Augmentation Methods on Text Classification Tasks
2022.04.04
발표자: 김호승
발표일자: 2022-04-04
저자: Xing Wu, Chaochen Gao, Meng Lin, Liangjun Zang, Zhongyuan Wang, Songlin Hu
학회명: ACL 2020

Natural Attack for Pre-trained Models of Code
2022.03.28
발표자: 나철원
발표일자: 2022-03-28
저자: Zhou Yang, Jieke Shi, Junda He and David Lo
학회명: ICSE 2022

Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting
2022.03.28
발표자: 신재민
발표일자: 2022-03-28
저자: Giorgos Bouritsas
학회명: ICML 2020

DGCN: Diversified Recommendation with Graph Convolution Networks
2022.03.28
발표자: 양희윤
발표일자: 2022-03-28
저자: Yu Zheng, Chen Gao, Liang Chen, Depeng Jin, Yong Li
학회명: WWW ’21

Divergence-aware Federated Self-Supervised Learning
2022.03.22
발표자: 강용훈
발표일자: 2022-03-22
저자: Weiming Zhuang, Yonggang Wen, Shuai Zhang
학회명: ICLR 2022

Recurrent Auto-Encoder with Multi-Resolution Ensemble and Predictive Coding for Multivariate Time-Series Anomaly Detection(RAE-MEPC)
2022.03.22
발표자: 신효정
발표일자: 2022-03-22
저자: Heejeong Choi, Subin Kim, and Pilsung Kang
학회명: arXiv, 21 Feb 2022

WIRING UP VISION:MINIMIZING SUPERVISED SYNAPTIC UPDATES NEEDED TO PRODUCE A PRIMATE VENTRAL STREAM
2022.03.23
발표자: 안재한
발표일자: 2022-03-22
저자: Franziska Geiger ~Franziska_Geiger1 , Martin Schrimpf, Tiago Marques, James J. DiCarlo
학회명: ICLR2022

Online Knowledge Distillation for Efficient Pose Estimation
2022.03.03
발표자: 배현재
발표일자: 2022-03-04
저자: Zheng Li¹ , Jingwen Ye², Mingli Song², Ying Huang1, Zhigeng Pan1
학회명: ICCV 2021
Input Complexity and Out-of-distribution Detection with Likelihood-based Generative Models
2022.03.04
발표자: 노순철
발표일자: 2022-03-04

Channelized Axial Attention – Considering Channel Relation within Spatial Attention for Semantic Segmentation
2022.03.04
발표자: 윤수현
발표일자: 2022-03-04
저자: Ye Huang, Di Kang, Wenjing Jin, *Xiangjian He, Liu Liu
학회명: AAAI 2022

FedBABU: Toward Enhanced Representation for Federated Image Classification
2022.03.04
발표자: 홍만수
발표일자: 2022-03-04
저자: Jaehoon Oh, Sangmook Kim, Se-Young Yun
학회명: ICLR 2022

Deep Learning for Symbolic Mathematics
2022.02.22
발표자: 고설준
발표일자: 2022-02-22
저자: Guillaume Lample, François Charton
학회명: ICLR2020

Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples
2022.02.22
발표자: 김유성
발표일자: 2022-02-22
저자: Mahmoud Assran et al.
학회명: ICCV 2021
Boosting the Performance of Semi-Supervised Learning with Unsupervised Clustering
2022.02.22
발표자: 김누리
발표일자: 2022-02-22
저자: Lerner, Boaz, Guy Shiran, and Daphna Weinshall
학회명: arXiv preprint arXiv:2012.00504 (2020)

Universal Domain Adaptation through Self-Supervision
2022.02.22
발표자: 이진섭
발표일자: 2022-02-22
저자: Kuniaki Saito , Donghyun Kim, Stan Sclaroff, Kate Saenko
학회명: NIPS 2020

GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism
2022.02.22
발표자: 조영성
발표일자: 2022-02-22
저자: Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu Chen, Dehao Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, Zhifeng Chen
논문지: https://arxiv.org/abs/1811.06965

Dual Attention Transfer in Session-based Recommendation with Multi-dimensional Integration
2022.02.15
발표자: 양희윤
발표일자: 2022-02-15
저자: Chen Chen, Jie Guo, Bin Song
학회명: ACM SIGIR 2021

Contrastive Code Representation Learning
2022.02.15
발표자: 최윤석
발표일자: 2022-02-15
저자: Paras Jain, Ajay Jain, Tianjun Zhang, Pieter Abbeel, Joseph E. Gonzalez, Ion Stoica
학회명: EMNLP 2021

Do transformers really perform bad for graph representation?
2022.02.15
발표자: 김가형
발표일자: 2022-02-15
저자: Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu
학회명: NeurIPS 2021
beta값만 이용하였을 때 원했던 결과를 못 얻어서 매핑펑션을 이용했다고 하면, 매핑펑션에 따라서 성능차이가 있을 거로 생각이되는데 비교실험은 concav 포함 정도의 차이가 아닌 역 관계(?) 만을 보여준 것 같아 아쉽습니다. x/2-x의 경우보다 x^2, x^3과 같이 그 차이를 더 크게 한다면 앞 뒤의 차이를 더욱 크게 만든다면 어떤 효과가 예상될까요?