본문 바로가기
메뉴 토글하기 IIS LAB IIS LAB
  • 검색
  • 로그인
  • ABOUT
    • LAB
    • NEWS
    • Awards
    • Recruit
  • MEMBERS
    • Professor
    • PhD
    • MS
    • Undergraduated
    • Alummi
  • PROJECT
    • Current
    • Complete
  • RESEARCH
    • Domestic Conf.
    • International Conf.
    • Domestic Journal
    • International Journal
    • Patent
  • SEMINAR
  • NAS

세미나

쓰기

 

Revisiting consistency regularization for semi-supervised learning

by김누리 2023.04.12 19:53
발표자 김누리 
발표일자 2023-04-12 
저자 Fan, Yue, et al. 
학회명  
논문지 International Journal of Computer Vision 131.3 (2023): 626-643. 

Consistency regularization is one of the most widely-used techniques for semi-supervised learning (SSL). Generally, the aim is to train a model that is invariant to various data augmentations. In this paper, we revisit this idea and find that enforcing invariance by decreasing distances between features from differently augmented images leads to improved performance. However, encouraging equivariance instead, by increasing the feature distance, further improves performance. To this end, we propose an improved consistency regularization framework by a simple yet effective technique, FeatDistLoss, that imposes consistency and equivariance on the classifier and the feature level, respectively. Experimental results show that our model defines a new state of the art across a variety of standard semi-supervised learning benchmarks as well as imbalanced semi-supervised learning benchmarks. Particularly, we outperform previous work by a significant margin in low data regimes and at large imbalance ratios. Extensive experiments are conducted to analyze the method, and the code will be published.


첨부 [1]
  • 230412_김누리.pptx [File Size:3.16MB/Download:26]
목록

댓글 0

    2023

      CORE: A Retrieve-then-Edit Framework for Counterfactual Data Generation
      2023.10.04
      발표자: 김효준     발표일자: 2023-10-04     저자: Tanay Dixit, Bhargavi Paranjape, Hannaneh Hajishirzi, Luke Zettlemoyer     학회명: 2022 EMNLP findings    
      Can Large Language Models Be an Alternative to Human Evaluation?
      2023.09.20
      발표자: 김호승     발표일자: 2023-09-20     저자: Cheng-Han Chiang, Hung-yi Lee     학회명: ACL 2023    
      Large Selective Kernel Network for Remote Sensing Object Detection
      2023.09.20
      발표자: 황성준     발표일자: 2023-09-20    
      Federated Learning from Pre-Trained Models: A Contrastive Learning Apporoach
      2023.09.20
      발표자: 강용훈     발표일자: 2023-09-20     저자: Yue Tan, Guodong Long, Jie Ma, Lu Liu, Tianyi Zhou, Jing Jiang     학회명: NeurIPS 2022    
      Conflict-based cross-view consistency for semi supervised semantic segmentation
      2023.09.20
      발표자: 장성인     발표일자: 2023-09-20     저자: Zicheng Wang     학회명: CVPR2023    
      Contrastive Curriculum Learning for Sequential User Behavior Modeling via Data Augmentation
      2023.09.13
      발표자: 김한별     발표일자: 2023-09-13     저자: Shuqing Bian, Wayne Xin Zhao, Kun Zhou, Jing Cai, Yancheng He, Cunxiang Yin, Ji-Rong Wen     학회명: CIKM 2021    
      Seizing Critical Learning Periods in Federated Learning
      2023.09.13
      발표자: 홍만수     발표일자: 2023-09-13     저자: Gang Yan, Hao Wang, Jian Li     학회명: AAAI 2022    
      Improving Knowledge Distillation via Regularizing Feature Norm and Direction
      2023.09.13
      발표자: 이재준     발표일자: 2023-09-13     저자: Yuzhu Wang, Lechao Cheng†, Manni Duan, Yongheng Wang, Zunlei Feng, Shu Kong     논문지: arxiv 2023    
      CodeT5+: Open Code Large Language Models for Code Understanding and Generation
      2023.09.13
      발표자: 안지민     발표일자: 2023-09-13     저자: Yue Wang, Hung Le., et al     학회명: arXiv 2023    
      AdCo & CaCo
      2023.09.06
      발표자: 이진섭     발표일자: 2023-09-06     저자: Qianjiang Hu, Xiao Wang, Wei Hu, Guo-Jun Qi | Xiao Wang, Yuhang Huang, Dan Zeng, Guo-Jun Qi     학회명: AdCo : 2021 CVPR     논문지: CaCo : 2022 IEEE TPAMI    
      Self-Supervised Aggregation of Diverse Experts for Test-Agnostic Long-Tailed Recongition
      2023.09.06
      발표자: 장현민     발표일자: 2023-09-06     저자: Yifan Zhang, Brryan Hooi, Lanqing Hong, Jiashi Feng     학회명: NeurIPS 2022    
      Do We Really Need a Learnable Classifier at the End of Deep Neural Network?
      2023.09.06
      발표자: 임지영     발표일자: 2023-09-06     학회명: NeurIPS 2022    
      SCOTT: Self-Consistent Chain-of-Thought Distillation
      2023.08.23
      발표자: 나철원     발표일자: 2023-08-23     저자: Peifeng Wang, Zhengyang Wang, Zheng Li, Yifan Gao, Bing Yin, Xiang Ren     학회명: ACL 2023    
      DualCoop: Fast Adaptation to Multi-Label Recognition with Limited Annotations
      2023.08.23
      발표자: 송경렬     발표일자: 2023-08-23     저자: Ximeng Sun1 Ping Hu1 Kate Saenko1,2     학회명: Neurlips 2022     논문지: Neurlips 2022    
      CLIP is Also an Efficient Segmenter: A Text-Driven Approach for Weakly-Supervised Semantic Segmentation
      2023.08.23
      발표자: 최준수     발표일자: 2023-08-23     저자: Yuqi Lin, Minghao Chen et al.     학회명: CVPR 2023     논문지: CVPR 2023    
      Focal Modulation Network
      2023.08.09
      발표자: 황성준     발표일자: 2023-08-09    
      Adabin : Improving binary neural networks with adaptive binary sets
      2023.08.09
      발표자: 김도영     발표일자: 2023-08-09     저자: Zhijun Tu, Xinghao Chen, Pengju Ren, and Yunhe Wang     학회명: ECCV 2022    
      Over-Training with Mixup May Hurt Generalization
      2023.08.09
      발표자: 안재한     발표일자: 2023-08-09     저자: Zixuan Liu, Ziqiao Wang, Hongyu Guo, Yongyi Mao     학회명: ICLR 2023    
      Style Normalization and Restitution for Domain Generalization and Adaptation
      2023.08.01
      발표자: 김영재     발표일자: 2023-08-02     저자: Xin Jin, Cuiling Lan, Wenjun Zeng, Zhibo Chen     학회명: CVPR 2020    
      SSR_An Efficient and Robust Framework for Learning with Unknown Label Noise
      2023.08.02
      발표자: 이진섭     발표일자: 2023-08-02     저자: Chen Feng, Georgios Tzimiropoulos, Ioannis Patras     학회명: BMVC 2022    
이전 Prev 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 다음 Next

검색

로그인

회원가입 ID/PW 찾기
(16419)
경기도 수원시 장안구 율천동 서부로 2066 성균관대학교 자연과학캠퍼스 제2공학관 27305호 정보및지능시스템연구실

IISLab, 27305, Engineering Bldg. 2, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, Republic of Korea

TEL: 031-290-7987
FAX: 031-299-4637
skku.iislab(at)gmail.com

  • Study
  • Language
    • 한국어
    • English
  • Layout by COMI